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ABSTRACT

We present a simple dynamical model for the basic spatial and temporal structure of the large-scale modes of intraseasonal
variability and associated variations in the zonal index. Such variability in the extra-tropical atmosphere is known to be
represented by fairly well-defined patterns or modes, and among the most prominent are the North Atlantic Oscillation (NAO)
and a more zonally symmetric pattern known as an annular mode, which is most pronounced in the Southern Hemisphere.
We suggest that these patterns are a direct consequence of the stirring effects of baroclinic eddies, and we explicitly show how
such stirring, as represented by a simple random forcing in a barotropic model, leads to a variability in the zonal flow via a
variability in the eddy momentum flux convergence and to patterns similar to those observed. Typically, the leading modes
of variability may be characterized as a mixture of ‘wobbles’ in the zonal jet position and ’pulses’ in the zonal jet strength.
If the stochastic forcing is statistically zonally uniform, then the resulting patterns of variability (i.e., the empirical orthogonal
functions) are zonally uniform and the pressure pattern is dipolar in the meridional direction, resembling an annular mode.
If the forcing is enhanced in a zonally localized region, thus mimicking the effects of a stormtrack over the ocean, then the
resulting variability pattern is zonally localized, with a pattern resembling the North Atlantic Oscillation. This suggests that
the North Atlantic Oscillation and annular modes are produced by the same mechanism, and are manifestations of the same
phenomenon.

The timescale of variability of the patterns is longer than the decorrelation timescale of the stochastic forcing, being red-
dened by nonlinear dynamics and by the linear effects of friction. For reasonable parameters this produces a decorrelation time
of order 10 days. The model also produces some long term (e.g., 100–1000 days) variability, without imposing such variability
via the external parameters except in the nearly white stochastic forcing.

1. Introduction

The large-scale atmospheric circulation displays vari-
ability on multiple timescales. The most prominent
variability in the extratropics is that due to baroclinic
eddies, or midlatitude weather systems, which typi-
cally have a timescale of a few days. On timescales of
a season or longer atmospheric variability may be in-
fluenced by interactions at its boundaries (e.g., by the
sea-surface temperature) and by other slow changes
in forcing. The variability on intermediate (i.e., in-
traseasonal) timescales, say between 10 days and a
season (and often confusingly called ‘low-frequency’
variability) has a less obvious cause. The direct ef-
fect of the ocean or other changing boundary seems
unlikely to be important, both because large-scale
sea-surface temperatures tend to change primarily on
still longer timescales and because their effect is un-
likely to be strong enough to produce discernible
changes in the atmospheric circulation on the 10–100
day timescale. Rather, we expect that this variability

has a primarily atmospheric origin, ultimately aris-
ing from baroclinic activity and weather systems and
reddened by frictional or nonlinear processes. The
dynamics of such variability, however, is not fully un-
derstood, and is the subject of this paper.

Although we may refer to intraseasonal variabil-
ity as if there were a distinct timescale and a dis-
tinct phenomenon, there is no pronounced peak in
the power spectrum of the atmospheric fields on the
weeks-to-months timescale, but nor is there a dip in
the spectrum at timescales longer than that associated
with baroclinic eddies. This suggests that the vari-
ability at intraseasonal timescales may be, at leading
order, caused by a reddening of the power spectrum
of the known forcing (i.e., baroclinic instability) by
frictional processes and/or the nonlinear dynamical
effect of a cascade of variance to larger spatial scales
and longer frequencies. At still longer timescales,
there may be additional power on the year-to-decade
timescale, and whether this can have a purely atmo-
spheric origin is not known.
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If the atmospheric fields are appropriately filtered
in time to select intraseasonal timescales, then fairly
well-defined spatial patterns of variability emerge.
This spatial structure has been the object of much
study and debate, going back at least as far as Walker
and Bliss (1932), and summarized recently by Wal-
lace (2000) and Wanner et al. (2002). The patterns
robustly show up in correlation maps or telecon-
nection patterns (Wallace and Gutzler 1981), and in
the Empirical Orthogonal Functions (EOF) of the
low-passed fields (e.g., Ambaum et al. 2001), and a
host of such patterns have been identified by these
and other workers — the North Atlantic Oscillation
(NAO), the Northern and Southern Annular Modes
(NAM, SAM), the Pacific North American pattern
(PNA), the Pacific Decadal Oscillation (PDO) and so
on. Of these the North Atlantic Oscillation is prob-
ably the most well known and this, and the annular
modes (Thompson and Wallace 2000), will mainly
concern us in this paper. The scale of these patterns is
significantly larger than that typically associated with
a single baroclinic eddy, ranging from a few thousand
kilometers of the NAO to the hemispheric scale of
the annular modes. Two other aspects of their struc-
ture stand out: (i) They are barotropic, or at least
equivalent barotropic (little phase shift in the verti-
cal); (ii) There is a strong dipolar component in the
horizontal structure of the pressure field.

Although the patterns are of larger scale than baro-
clinic eddies, there is much to suggest that such eddy
activity (i.e., weather systems) is largely responsible
for producing them, even though the patterns are
fairly barotropic. On the theoretical side, large-scale
eddy-driven structures often tend to be barotropic
because the life-cycle of baroclinic eddies is char-
acterized by a barotropic decay and a cascade to
larger horizontal and vertical scales (Rhines 1977; Sim-
mons and Hoskins 1978; Salmon 1980), and ideal-
ized model simulations (e.g., Orlanski 1998) have
shown the important role of baroclinic eddies in pro-
ducing the quasi-stationary circulation. On the ob-
servational side, analysis of annular modes and the
NAO indicates that transient, high frequency (i.e.,
1–10 days) activity plays an important role in main-
taining their variability (e.g., Lau 1988; Limpasuvan
and Hartmann 2000; DeWeaver and Nigam 2000).
Consistently, the midlatitude jet in the Atlantic sector
is stronger during periods of high NAO index [Am-
baum et al. (2001), their figures 6 and 7], and this jet
is fairly barotropic, indicating an eddy-driven origin.
Finally, recent experiments with a GCM (Cash et al.
2002) have shown a strong correlation between the
location and strength of the dipole with the location

and strength of the baroclinic eddy activity.
Assuming, then, that the relevant large-scale dy-

namics are indeed barotropic, but that that eddy
activity is important as the ultimate source of the
variability, our goal now is to understand how such
higher-frequency (1–10 day timescale) eddy dynam-
ics can produce the characteristic spatial patterns
seen on longer (10–100 day) timescales. Specifically,
we seek to present a simple dynamical model, per-
haps the simplest possible dynamical model, of the
NAO and annular modes in order to shed insight on
the dynamics of such structures. We shall not present
a complete model or a complete theory. Rather,
our model might be considered as a ‘dynamical null-
hypothesis’ that might be built upon to create a more
complete theory.

2. The Basic Model

a. Jets on a β-plane

Consider first the maintenance of the extratropical
jet. This has a different dynamical origin from the
highly baroclinic subtropical jet: the latter arises
from a thermal wind balance with the strong merid-
ional temperature gradients at the edge of the Hadley
Cell, whereas the former is driven by eddy momen-
tum flux convergence in midlatitude weather systems
and, because these largely occur in the mature phase
of the baroclinic lifecycle, they act to produce a pre-
dominantly barotropic jet. In reality the subtropical
and midlatitude jet are often not geographically dis-
tinct because the polar limit of the Hadley cell over-
laps the equatorial limit of the midlatitude baroclinic
zone, and the jets may appear as one.

A simple barotropic model illustrates the mecha-
nisms of the eddy driven jet (e.g., Held 2000). For
two-dimensional incompressible flow the barotropic
zonal momentum equation is

∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y
− fv = −∂φ

∂x
+ Fu −Du (2.1)

where Fu and Du represent the effects of any forcing
and dissipation and the other notation is standard.
The meridional momentum and vorticity fluxes are
related by the identity

vζ = 1
2
∂

∂x

(

v2 − u2)− ∂

∂y
(uv) (2.2)

so that with cyclic boundary conditions

v′ζ ′ = −∂u
′v′

∂y
. (2.3)
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where the overbar denotes a zonal average, and v =
0. Equation (2.3) also holds, locally in x, if the aver-
age is a time or ensemble average provided that the
eddy statistics are zonally uniform. Averaging (2.1)
thus gives

∂u

∂t
= v′ζ ′ + F u −Du (2.4)

again using that v = 0, a result that again also holds in
a time or ensemble average if the eddy statistics are
zonally uniform.

Typically, there will be little direct forcing of the
mean momentum, and if friction is parameterized by
a linear drag then

∂u

∂t
= v′ζ ′ − ru (2.5)

where r is an inverse frictional timescale. Now con-
sider the maintenance of this vorticity flux. The
barotropic vorticity equation is

∂ζ

∂t
+ u · ∇ζ + vβ = Fζ −Dζ (2.6)

where Fζ parameterizes the stirring of barotropic vor-
ticity and Dζ represents dissipation. Linearize about
a mean zonal flow to give

∂ζ ′

∂t
+ u

∂ζ ′

∂x
+ γv = F ′ζ −D′ζ (2.7)

where

γ = β − ∂2u

∂y2 (2.8)

is the meridional gradient of absolute vorticity. From
(2.7) form the pseudo-momentum equation by multi-
plying by ζ ′/γ and zonally averaging, whence

∂M

∂t
− v′ζ ′ = −1

γ
(ζ ′F ′ζ − ζ ′D′ζ) (2.9)

where

M = − 1
2γ
ζ ′2 (2.10)

is the pseudomomentum. From (2.5) and (2.9) we
obtain

∂u

∂t
− ∂M

∂t
= −ru +

1
γ

(ζ ′F ′ζ − ζ ′D′ζ), (2.11)

and in a statistically steady state

ru =
1
γ

(ζ ′F ′ζ − ζ ′D′ζ). (2.12)

As the terms on the right-hand-side represent the stir-
ring and dissipation of vorticity, then meridionally lo-
calised but otherwise relatively unstructured vortic-
ity stirring will give rise (for γ > 0) to an eastward
mean zonal flow in the region of the stirring, with a
westward flow north and south of the stirring region.
These equations represent the well-known physical
argument that stirring gives rise to Rossby wave gen-
eration, and that momentum will converge in the re-
gion of stirring as the Rossby waves propagate away
and dissipate.

If the stirred region is sufficiently broad then mul-
tiple jets may form within the stirring region (e.g.,
Vallis and Maltrud 1993; Lee 1997). In that case the
mechanism of jet formation is then often expressed
in terms of an inverse energy cascade to larger scales,
inhibited by the formation of Rossby waves, leading
to the preferential formation of zonal flow. However,
such jets may still be considered to be maintained
by the stirring of pseudomomentum, but the pseudo-
momentum stirring, (ζ ′F ′ζ)/γ, is organized by the jet
structure itself even though the vorticity stirring, Fζ ,
may be homogeneous. In the earth’s atmosphere the
stirring region (i.e., the midlatitude baroclinic zone) is
relatively narrow in the sense that there is normally
only one region of eddy driven eastward flow in the
mean; however, the baroclinic zone is typically wider
than the instantaneous jet itself, and the jet may thus
meander within the baroclinic zone.

b. Source of stirring in a baroclinic atmosphere

The stirring that might generate such jets arises
from baroclinic instability or, more precisely, from
the transfer of energy from baroclinic to barotropic
modes. To see this, consider the two-layer quasi-
geostrophic equations

∂qi
∂t

+ J(ψi, qi) = 0, i = 1, 2 (2.13)

where

qi = ∇2ψi + F (ψj − ψi) + βy, j = 3− i. (2.14)

and F is the inverse square deformation radius. If this
is decomposed into barotropic and baroclinic modes
in the standard way, the evolution equation for the
barotropic mode becomes

∂

∂t
∇2ψ + J(ψ,∇2ψ + βy) = J(τ,∇2τ ) (2.15)

where ψ = (ψ1 + ψ2)/2 and τ = (ψ1 − ψ2)/2. The
term on the right-hand-side is just the stirring of the
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barotropic mode by the baroclinic mode, leading to
transfer of energy into the barotropic mode as part
of the baroclinic lifecycle. Such stirring by baroclinic
eddies thus gives rise to momentum convergence and
is the ultimate cause of the surface westerly winds in
midlatitudes. The vorticity flux producing the zonal
jet will, of course, fluctuate simply because baroclinic
activity fluctuates, partly in response to variations in
the zonal shear itself and partly because it is a tur-
bulent, chaotic system, and these fluctuations will
give rise to variations in the zonal index (e.g., Feld-
stein and Lee 1998; Lorenz and Hartmann 2001). Al-
though such variations will be largely barotropic, the
stirring will be dependent in part on the barotropic
flow, because the evolution equation of τ involves
ψ, and this may lead to feedbacks between the jets
and the stirring. For example, the presence of surface
drag may generate a shear from the barotropic flow,
and this in turn may produce baroclinic activity and
enhanced stirring (Robinson 2000). In our numerical
simulations, we will restrict ourselves to the simpler
barotropic case and will model the stirring simply by
a random process with time and space scales chosen
to roughly mimic those of baroclinic instability, with
no direct dependence on the jet itself.

c. Patterns of variability

Because the stirring is produced by a chaotic process
it will fluctuate, and this will produce a response in
the zonal wind field and the associated circulation. In
particular, a fluctuation in the vorticity flux that has
a simple meridional structure will produces a dipo-
lar structure in the pressure or streamfunction field.
To illustrate this, Fig. 1 shows a localized northward
eddy flux of vorticity (light arrows). Two circuits are
shown as solid contours with circulation Γ =

∮

ut ds,
where ut is the velocity component tangential to the
circuit. With the mechanical damping, we have

dΓ
dt

=
∮

unζ ds − rΓ (2.16)

where un is the velocity component normal to the
(right-hand oriented) circuit. Because the flow is in-
compressible,

∮

un ds =
∮

(∂ψ/∂s)ds = 0, where ψ is
the streamfunction. Thus, if an overbar (e.g., u) de-
notes the average along the circuit, and a prime (u′)
the departure from this average, then

∂ut
∂t

= u′nζ ′ − rut, (2.17)

FIGURE 1: Circulation pattern induced by anomolous vor-
ticity fluxes. The light arrows represent time- or ensemble-
mean fluxes of eddy vorticity. The contours represent cir-
cuits for the calculation of circulation. The heavy arrows
on the circuits represent the circulation that results from
the eddy vorticity flux.

and for the time average in addition to the circuit av-
erage

ut = u′nζ ′/r. (2.18)

Thus, a time-mean eddy flux of vorticity out of the
circuit will give rise to a mean circulation. In Fig.
1, to the north of the maximum vorticity flux, a cy-
clonic circulation will result, and to the south an anti-
cyclonic circulation. This change in sign of the circu-
lation corresponds to a change in sign of the stream-
function; if the pattern of vorticity flux is interpreted
as an anomaly from a climatology, the eddy vorticity
flux then produces a dipolar circulation anomaly. If
the fluctuation is zonally symmetric, then the circu-
lation anomaly will extend around the hemisphere.
If the fluctuation is confined to some region of longi-
tude as in Fig. 1, then the fluctuation will be a zonally
localized dipole, rather like the NAO.

The argument above provides information about
the circulation around a closed loop and, formally,
says nothing about the zonal velocity itself. Of
course the loop may extend around a latitude cir-
cle, in which case ut is the zonal velocity and we
recover (2.5). However, although (2.9) and (2.12)
apply strictly only to the zonally averaged flow, we
may also expect that locally stronger stirring will give
rise to a locally stronger and more variable zonal jet.
To see this, note that if the zonal scale over which
the eddy statistics vary is longer than the meridional
scale, then the first term on the right-hand-side of
(2.2) will be smaller than the second term, after time
averaging, and (2.3) will approximately hold. Similarly,
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FIGURE 2: The time and zonally averaged zonal wind
(solid line) from the zonally symmetric numerical model,
Z1. The dashed line is the rms (i.e., eddy) velocity. The
stochastic forcing is zonally uniform, centered at 45◦.

the zonal advection of momentum in (2.1) will be
smaller than that of meridional momentum, and the
upshot is that (2.5) will approximately hold, with the
overbar representing an average over a zonal sector
without the need for complete zonal averaging.

Thus, in broad regions of enhanced stirring (e.g.,
the stormtrack regions) we expect to observe two re-
lated phenomena: (i) A stonger and more variable
zonal jet; (ii) streamfunction or pressure anomalies
that have the dipolar structure noted above. Further-
more, because these are anomaly fields, any diagnos-
tic that seeks to economically represent the patterns
of pressure or streamfunction variability, for exam-
ple the EOFs, will also have a dipolar structure, and
this is of course the characteristic pattern of the NAO.
The latitude of the node of the mean streamfunction
dipole will be that at which the mean vorticity flux
is largest, and this is latitude of the mean jet itself.
However, the distribution of the anomolous fluxes
need not coincide with that of the mean fluxes, and
we will see in section 4 that the node of the EOF
of the streamfunction, representing the variability of
the pattern, is often poleward of the jet and associated
with a change in the position of the jet.

Finally, regarding the temporal structure of the re-
sponse, suppose that, for simplicity, the stirring is
white noise. Then, because of the effects of friction in
(2.5), and possibly the inverse cascade, the response
will be redder than the stirring — that is to say, it will
have more power at lower frequencies. Thus, the
posited patterns will be most apparent in the tempo-
rally low-passed fields, as this will filter the noise of
the stirring itself.

3. Numerical model

To see whether eddy stirring can indeed produce the
characteristic spatial patterns and temporal variabil-
ity of annular modes and the NAO, we integrate the
barotropic vorticity equation on the sphere, namely

∂ζ

∂t
+ J(ψ, ζ + f ) = S − rζ + κ∇4ζ. (3.1)

The notation is standard, with f = 2Ω sin ϑ, where ϑ
is latitude, ζ is vorticity and ψ streamfunction. The
model is spectral with the nonlinear term evaluated
without aliasing using a spectral transform method.
Typically, the model is run at a resolution of T42
with test integrations at T84; this is more than ad-
equate resolution because our concern is large-scale
patterns. The last two terms on the right hand side
of (3.1) are a linear drag and a term to remove the
enstrophy that cascades to small scales, being the
simplest parameterizations of those processes that re-
move momentum and enstrophy from the flow. The
coefficient κ depends on the model resolution, for
that term is a subgridscale closure. The linear drag
has some physical grounding in Ekman layer theory,
and for a barotropic representation of the atmosphere
a reasonable value of r is of order 1/10 days−1.

The term S represents stirring of the barotropic
flow by baroclinic eddies, and we represent this by a
Markov process, similar to that employed in Maltrud
and Vallis (1991). Typically, we choose to excite a
small range of wavenumbers, nmin < n < nmax where
n is the total wavenumber and, for example, nmin = 8
and nmax = 12, except that small zonal wavenumbers,
including the zonal flow, are excluded from the forc-
ing. Ideally, we would prefer not impose any partic-
ular timescale on the variability of the model fields,
but a white noise forcing (which has equal amplitudes
at all timescales) is not particularly realistic or ap-
propriate, because the highest realizable frequencies
would be timestep dependent and would not gener-
ate much response in the vorticity field, leading to a
very noisy solution. Rather, we choose the random
forcing to have a decorrelation timescale of about two
days, similar to that of baroclinic instability. We sat-
isfy this by making the forcing in each wavenumber,
Smn to be outcome of the stochastic process

dSmn
dt

= Ẇmn − Smn/τ (3.2)

where Ẇ is a white noise process (a different real-
isation for each wavenumber) and the parameter τ
determines the decorrelation time of the forcing. To
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Experiment Forcing Wavenumbers Meridional half-width Zonally symmetric
of stirring region

Z1 11 – 13 12◦ Yes
Z2 7 – 9 12◦ Yes
A1 11 – 13† 12◦ No (single enhanced region)
A2 11 – 13† 12◦ No (two enhanced regions)

TABLE 1: Parameters for numerical experiments. Experiments with varying parameters are branches off Z1, unless
noted. The decorrelation timescale of the forcing is always 2 days. († In the asymmetric cases the forcing wavenumbers
are modified because the forcing is zonally asymmetric, which introduces an additional low wavenumber forcing.) The
damping timescale is 106 s, or approximately 12 days, for all experiments illustrated, except as in Figs. 16 and 17. The
stirring region has a Gaussian distribution in latitude, exp[(ϑ − ϑ0)2/2σ2

ϑ ], and the ’half-width’ is actually the standard
deviation, σϑ , of this. The zonally asymmetric forcing for A1 is described by (5.1), with B = 1.

implement (3.2), we use the related finite difference
equation (see Appendix),

Simn =
(

1− e−2dt/τ
)1/2

Qi + e−dt/τSi−1
mn (3.3)

where Qi is chosen randomly and uniformly ∈
(−A,A) where A determines the overall forcing am-
plitude, dt is the model timestep, the superscript i is
the timestep index, and τ is the prescribed decorre-
lation time of the forcing, which we typically choose
to be two days. This spectral forcing is then trans-
formed to physical space, where it is masked such
that it has a non-negligible amplitude only in midlat-
itudes, typically between about 40◦ and 60◦ latitude.
For some experiments it is also made statistically zon-
ally nonuniform; that is, it is enhanced in a region
about 45◦ wide in longitude, to mimic the effects of
enhanced stirring in stormtracks. Instantaneously,
the forcing is zonally nonuniform, and in all cases
is constructed to have zero projection on the zonally
symmetric flow (i.e., all components with m = 0 are
zero at all times).

Apart from this meridional masking and the choice
of the scale of the stirring, the stochastic forcing is
relatively unstructured, and the resulting momentum
flux convergences result from the nonlinear dynam-
ics of the model. This type of stochastic model dif-
fers from that used in, for example, Branstator (1992)
or Whitaker and Sardeshmukh (1998), in which the
model is linear and the mean flow is taken from ob-
servations or a GCM. Here the model is nonlinear,
and it is the stochastic forcing in conjunction with
nonlinear dynamics that generates the mean flow,
and that is important for its pattern of variability.

4. Spatial Structure of Model Variability

a. Mean state for zonally symmetric model

A typical time and zonally averaged zonal wind, and
the rms (i.e., eddy) velocity are illustrated in Fig. 2.
The stochastic forcing is a Gaussian centered at 45◦

with a standard deviation of 12◦, and a decorrelation
timescale of two days. A strong westward jet emerges
in the region of the forcing, flanked by two eastward
jets, rather stronger on the equatorial side indicating
enhanced wave breaking on that side. Consistently,
the mean position of the jet is somewhat poleward of
the center of the stirring, and this polewards offset in-
creases slightly as the forcing strength increases. The
eddy velocities are of the same magnitude, albeit a lit-
tle larger than, the zonally averaged velocity, a char-
acteristic also of the flow in the earth’s atmosphere.
This is a consequence of the rather limited inverse
cascade, in both model and atmosphere, which limits
the magnitude of the eddies.

The natural meridional scale of a jet in homoge-
neous barotropic turbulence is determined by the
eddy kinetic energy, and the value of β and fric-
tion (e.g., Smith et al. 2002). As noted above, if the
meridional extent of the forcing region is allowed to
become larger than that jet scale, multiple jets may
form within the forcing region. This phenomena is
illustrated in Fig. 3. Interestingly, the transitions from
one jet regime to another are not smooth; for exam-
ple, as the forcing region broadens sufficiently there
is a sharp transition from one jet to two, and the loca-
tions of the ensuing two jets are both quite different
from that of the single jet.

b. Variability

Now consider the variability of a single, eddy-driven
zonal jet. Consider the momentum equation (2.5)
and suppose that the vorticity flux is such as to pro-
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FIGURE 3: Time and zonally averaged zonal flow in ex-
periments with varying widths (standard deviations) of the
forcing zone, but otherwise the same forcing as Z1. If the
forcing zone is narrow, then a single eastward jet forms in
the region of the forcing. For a wide enough forcing zone,
alternating jets can form within the forcing zone.

duce an eastward jet in midlatitudes, and that its mag-
nitude fluctuates temporally but that its meridional
structure remains fixed. Then the zonally averaged
zonal wind will fluctuate in place — it will pulse — and
the associated EOF of the zonal wind will be similar
to that of the mean wind (Fig. 4a). Since at each in-
stant the pressure field (the streamfunction) and the
velocity are linearly related the associated variability
in the pressure field can be expected to be a dipole.
If the zonal wind fluctuates in this way, the node of
the pressure EOF will coincide with the maximum
of the jet, which in turn occurs where the stirring is
strongest.

The other dominant mode of variability might be
termed a wobbling of the zonal jet, that is an oscil-
lation in its latitude without necessarily any change
in amplitude (Fig. 4b). Both pulsing and wobbling
behaviour frequently occur in numerical simulations,
and one factor determining which is dominant is the
width of the stirring region (Fig. 5). If the stirring re-
gion is wider than the natural width of a single jet,
but not sufficiently wide to support two jets, the jet’s
position can vary within the stirred region, whereas
if the stirring region is very narrow the jet position is
effectively fixed (Fig. 5). The meridional structure of
a pure pulsing EOF more-or-less mirrors that of the
jet itself with a tripolar structure in the zonal wind,
and the wobbling mode is in quadrature with this.

With a stirring region of similar meridional extent
to that of the baroclinic zone on earth a wobbling or
a ‘mixed’ mode tends to prevail (Fig. 6). Typically
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FIGURE 4: (a) Schematic of the leading EOF associated
with a pulsing jet. Solid line is the mean zonal wind itself,
the dotted line is the EOF of the zonal velocity and the
dashed line the EOF of the pressure or streamfunction field.
(b) As for (a) but for the leading EOF associated with a
wobbling or oscillating jet.

−30 −20 −10 0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

la
tit

ud
e

6 degree jet
6 degree EOF 1
24 degree jet
24 degree EOF 1 

FIGURE 5: Mean jets and first EOFs for simulations with a
narrow stirring region (approximately 6◦ half-width) and a
broader stirring region (approximately 24◦ half-width), but
otherwise the same forcing as Z1. In the former case the
first EOF is a pulse, and resembles the jet itself. In the
latter case the first EOF is a wobble, almost in quadrature
with the jet.
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FIGURE 6: (a) The first two EOFs (solid and dashed, re-
spectively) of the zonally averaged zonal wind correspond-
ing of the model Z1. The solid line corresponds to a ‘wob-
bling’ zonal wind, the dashed to a ‘pulsing’ zonal wind. The
light dotted line is the mean zonal wind. (b) Corresponding
EOFs of the zonally averaged streamfunction.

we find that the wobbling EOF is dominant when
the zonal scale of the stochastic forcing is around
wavenumber 10 or of smaller scale (higher wavenum-
ber). For a larger scale forcing, the first EOF tends to
be a mix of wobbling and pulsing modes of variabil-
ity, as in Fig. 7; rarely is the first EOF a pure puls-
ing mode. Note that in both cases (see Fig. 6b and
Fig. 7b) the first EOF of the streamfunction is dipolar,
with a node somewhat poleward of the mean position
of the jet and the lower band more or less coincident
with the mean position of the jet. These structures
are apparent in both the EOF of the zonally aver-
aged fields, and in the zonally averaged EOF of the
two dimensional fields (not shown). In the former
case the variance accounted for by the first two EOFs
is typically over 30% each and these are both well
separated from the other EOFs. Similar structures
are seen in the observations (Feldstein and Lee 1998;
Lorenz and Hartmann 2001) and in simulations with
a general circulation model (Cash et al. 2002). In-
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FIGURE 7: (a) The first two EOFs (solid and dashed, re-
spectively) of the zonally averaged zonal wind correspond-
ing to the solution of Z2. The EOFs are combinations of
pulses and wobbles. (b) Corresponding EOFs of the zon-
ally averaged streamfunction.

deed Feldstein and Lee (1998) characterize the EOFs
of the northern and southern hemispheres as being
either a strengthening and weakening of the jet, or
a latitudinal movement of the jet, although the inter-
pretation is complicated by additional variations in
the subtropical jet.

Although useful as descriptive phrases, the puls-
ing and wobbling modes are not wholly independent.
Recall that the mean wind was somewhat poleward
of the center of the stirring, because of predominantly
equatorward breaking of the Rossby waves. If the
stirring is stronger, the jet is not only stronger but
is pushed polewards, and the pulse and the wobble
are synchronized. The EOFs are describing this in
the most economical way possible, subject to their
orthogonality.

c. Two-dimensional patterns

When one looks at the EOF of the two-dimensional
fields, the zonal average of the first EOF (of either ve-
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locity or streamfunction) is usually very similar to the
EOF of the zonally average field, although the subse-
quent EOFs are less distinct. The first EOF normally
is well separated from the others, although the vari-
ance accounted for is typically less than 20%. The
first EOF of the two-dimensional streamfunction is il-
lustrated in Fig. 8. It is nearly zonally symmetric and
may be taken as a definition of the annular mode of
this model. Any zonal asymmetry here can be as-
cribed to sampling issues, that is, a finite length of
numerical integration. However, although the lead-
ing EOF is not guaranteed to be zonally symmet-
ric, its existence should not lead one to necessarily
conclude that there is a strong mode of hemispheric-
wide variability in the model. The EOF analysis is
again merely seeking the most economical descrip-
tion of model variability. In particular, in most of
the integrations we have examined the zonal flow
does not vary synchronously across the hemisphere.
The one-point correlation function shows this quanti-
tatively (Fig. 9). In the meridional direction, the dipo-
lar structure of the EOF can be seen in the correla-
tion function, especially the one centered at the pole.
The zonal scale of the correlation is related to the
scale of the energy containing eddies, as one might
expect given that the spatial correlation function is
essentially the Fourier transform of the variance of
that variable (so the velocity correlation function is
the Fourier transform of the energy spectrum). Thus,
large-scale hemispheric-wide correlations are associ-
ated with variance in the m = 0 mode and, even
though zonal jets are naturally produced by eddies
on the sphere or β-plane, the covariability of flow
around a circle of latitude may be relatively weak.
Ultimately, the importance of an annular mode is re-
lated to how much eddy energy is in the zonal modes,
and this is a quantitative issue that can ultimately be
settled only by an appeal to observations. The spatial
structure of these correlations are in fact very similar
to those found in various simulations with a general
circulation model (Cash et al. 2002). There too the
dipole structure of the EOF is apparent, but there is
little hemispheric-wide correlation.

We can obtain another sense of the hemispheric
vs local nature of the variability by constructing the
EOFs from a quadrant (i.e., regions 90◦ wide) rather
than the full hemisphere. In both cases the fields are
put through a 10-day running average before com-
puting the EOFs, and these are illustrated in Fig. 10.
The first EOF of the regional field is almost coinci-
dent with that constructed from the full hemispheric
field, consistent with the notion that it is the same
mechanism producing the variations in the zonal ve-

(a)

(b)

FIGURE 8: (a) The leading EOF of the streamfunction
when the model is forced in a zonally symmetric config-
uration (Z1). (b) Leading EOF of the zonal wind. The zero
contours are omitted.

locity on a hemispheric and on a regional scale.
However, these variations are not always in con-
cert. To quantify this, we compute the correlations
between the daily timeseries of the principal compo-
nents (PCs) corresponding to the regional and hemi-
spheric EOFs, and between two opposing quadrants
(c.f., Cohen and Saito 2002). The values of these are:

C(Z,Q1) = 0.62 (4.1a)
C(Z,Q2) = 0.63 (4.1b)
C(Q1, Q2) = 0.16. (4.1c)

Here C(Z,Q1) is the temporal correlation between
the PCs of the first EOF from the zonally averaged
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FIGURE 9: The one-point auto-correlation of the streamfunction for the same integration as Fig. 8, for four different base
points (which can be identified as the points where the correlation is one). Because the statistics are zonally symmetric, the
longitude of the base points is unimportant. The zero contours are omitted.

flow and that of flow in a quadrant (and similarly
for C(Z,Q2)), and C(Q1, Q2) is the correlation be-
tween the flow in the two quadrants. The difference
between C(Z,Q1) and C(Z,Q2) is solely due to the
finite length of the timeseries, and so is a measure of
the error due to that.

If there were a pure annular mode in the sense that
the zonal velocity varied in unison on a hemispheric
scale the correlations would all be unity. If the quad-
rants were completely independent we would have

C(Z,Q1) = 0.5 (4.2a)
C(Z,Q2) = 0.5 (4.2b)
C(Q1, Q2) = 0. (4.2c)

Clearly the flow here is something in between these
extremes. One may conclude that although similar

dynamics is acting on both the regional and hemi-
spheric scale (because the meridional structure of the
respective EOFs are so similar) this dynamics does
not necessarily act in unison. We cannot expect the
real atmosphere to have quantitatively the same val-
ues as (4.1), but the qualitative picture is likely to be
similar.

d. Low and high index states

As noted, the mean position of the jet is slightly pole-
ward of the center of the stirring. The stronger the jet
the more poleward the mean jet position, as indicated
in Fig. 11, although the effect is rather weak and the
displacement of the jet is no more than 5◦. However,
a stronger jet is also noticeably narrower than a weak
one, and the easterlies on its equatorial flank are no-
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FIGURE 10: The EOF calculated from the zonally aver-
aged flow (solid line) and from the averaged flow in two
quadrants (dashed and dotted lines), for Z1.

ticeably stronger and extend further poleward. In a
model with a baroclinic subtropical jet, or the real
atmosphere, the effect of this would be to enhance
the separation between the eddy driven jet and the
subtropical jet, and to make the midlatitude surface
westerlies both stronger and slightly more poleward.
Both of these effects are seen in the observations dur-
ing high index states (Ambaum et al. 2001).

5. Zonally asymmetric model

a. One enhanced stirring region - the NAO

Suppose we now enhance the stirring in a longitudi-
nal region in order to roughly mimic the effects of
a storm track. However, we keep the simple merid-
ional structure used in the zonally symmetric case,
and the stirring maximum is at the same latitude for
all longitudes. Specifically, the longitudinal structure
of the amplitude of the stirring is

|Fζ | = A
(

1 + B exp(−(x− x0)2/2σ2)
)

(5.1)

where A and B are constants. A determines the
strength of the uniform background stirring and B
that of the zonal inhomogeneity, centered around
longitude x0. We have conducted experiments with
B ranging from 0 to about 10, with a value of order
unity best representing the enhanced stirring of the
stormtrack regions over the Atlantic and Pacific. The
parameter σ determines the width of the enhanced
stirring region.

Fig. 12 shows the fields of eddy kinetic energy and
the first EOF in an integration with B = 1 and an
enhanced stirring region of about 45◦ wide, roughly
comparable to the North Atlantic stormtrack. (This
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FIGURE 11: (a) Composites of the zonal wind, averaged
over periods when it is particularly strong or particularly
weak, for experiment Z1. The mean jet is solid, the other
lines corresponding to averages over periods when its peak
value deviates by more than one or two standard deviations
from the mean, as indicated in the legend. (b) Composite
of the zonal wind, as in (a), except now the composites are
averaged over periods when the first EOF exceeds or is less
than one or two standard deviations from its mean.

experiment is denoted A1; see table 1.) The eddy
kinetic energy is a direct reflection of the enhanced
stirring and, clearly, the EOF is centered around the
enhanced stirring and reflects the more vigorous ac-
tivity in that region. The localized dipole structure of
the streamfunction is very similar to that appearing
in zonally asymmetric GCMs (e.g., Cash et al. 2002)
and in the observations (e.g., Ambaum et al. 2001).
The one point correlation function (Fig. 13), with a
basepoint at the longitude where the EOF is a maxi-
mum picks up the meridional dipole structure of the
EOF, just as in the zonally symmetric case. In the
zonal direction, the correlation function is somewhat
more localized than the EOF and is not, in fact, very
dissimilar from that in the zonally symmetric case
Fig. 9. The day-to-day synoptic activity in the two
cases is rather similar, but in the zonally asymmetric
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FIGURE 12: (a) Eddy kinetic energy when the model is forced in a zonally asymmetric configuration, A1, with a single
enhanced region of forcing. (b) The leading EOF of the streamfunction. (c) The leading EOF of the zonal wind. The zeros
contour are omitted.

case there is a slight preference for dipole structures
to form in the region of enhanced stirring, and this
is detected by the EOF analysis. In the zonally sym-
metric case, similar two-dimensional structures form
locally, but with no longitudinal preference and as a
consequence the first EOF is almost zonally uniform.

We also calculated the EOFs based solely on the
fields in the region on the enhanced stirring, as well
as the EOFs in the opposite quadrant. The EOFs
in the enhanced stirring region show a similar dipole
structure to those of Fig. 12 and, in an analogous fash-

ion to (4.1), we calculate

C(Z,Q1) = 0.55 (5.2a)
C(Z,Q2) = 0.71 (5.2b)
C(Q1, Q2) = 0.11 (5.2c)

where Q2 denotes the region of enhanced stir-
ring, Q1 the opposite quadrant, and C(Z,Q1) and
C(Z,Q2) are the correlations between the princi-
pal components of the zonal EOF and the regional
EOFs, and C(Q1, Q2) is the correlation between the
two regional EOFs. Thus, the principal component
of EOF constructed from the hemispheric flow has
correlates well with the principal component of the
EOF constructed in the region of enhanced stirring.

The structural similarity between the EOF and
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FIGURE 13: The one-point correlation of the streamfunction, for the same integration as Fig. 12, with one enhanced stirring
region. The longitude of the base points is chosen to be along that of the strongest stirring, which is close to the longitude
where the EOF has its maximum value. The zero contours are omitted.

the teleconnection, and the similarity between the
barotropic model, the GCM results of Cash et al.
(2002), and the observations, are all suggestive of the
robustness of the mechanism identified. We make
two additional points. First, this is a nonlinear effect.
If localized stirring is added to the linear barotropic
vorticity equation, then the response is a superpo-
sition of beta plumes that trail westward from the
source but which produce no vorticity flux, an ef-
fect familiar to most physical oceanographers. (OF
course, one might construct a linear model to mimic
the nonlinear effects, but one would have to spec-
ify the structure of the vorticity fluxes.) Second, the
dipole structure that is so reminiscent of the NAO
arises robustly when the stirring is somewhat stronger

than the zonal mean stirring (i.e., when B in (5.1)
is of order one). However, if the localized stirring
is extremely intense then more exotic patterns (not
shown) occur. Now the theory of section 2(a) be-
comes invalid because of the extreme zonal inhomo-
geneity.

b. Two stirring regions

The Northern hemisphere has two major storm
tracks, one over the Pacific and the other over the
Atlantic. We model this with two stirring regions, un-
correlated from each other, and chosen to give an
eddy kinetic energy pattern that roughly corresponds
to that observed. The eddy kinetic energy and the
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FIGURE 14: (a) Eddy kinetic energy when the model is forced in a zonally asymmetric configuration, A2, with two
enhanced regions of forcing, roughly corresponding to the locations of the Atlantic and Pacific storm tracks. (b) Leading
EOF of the streamfunction. (c) Leading EOF of zonal wind. The zero contours are omitted.

first EOF of streamfunction are illustrated in Fig. 14.
The first EOF of the hemispheric field is quite annu-
lar, with two weak centers near the stirring regions.
The one point correlation functions at these centers
of action are rather similar to the case with only one
storm track. The correlations between the two cen-
ters (not shown) are rather weak, increasing with the
latitude of the basepoint, and there is no pronounced
teleconnection between the two stirring regions.

6. Temporal Structure

Apart from the signals due to El Niño and the sea-
sonal cycle, the large-scale patterns of extratropical
variability in the atmosphere appear to have a fairly

red spectrum, with no really significant peaks (Feld-
stein 2000). However, it is unclear whether the power
in these patterns continues to increase for timescales
longer than the interannual — that is, whether the
spectrum continues to redden for increasingly long
timescales or whether it flattens out and whitens (see
Stephenson et al. 2000). Notwithstanding that un-
certainty, the decorrelation timescale associated with
the NAO and similar patterns is of order 10 days.
Now, in our numerical model the various possible
timescales are the timescale of the forcing, a frictional
timescale determined by the value of r in (3.1), a non-
linear eddy turnover time for some scale L given by
L/|UL| where UL is the velocity magnitude at the
scale L, and a timescale associated with Rossby wave
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FIGURE 15: Sample timeseries of the principal component of the leading EOF of streamfunction in the zonally averaged
model, Z1. The lower panel is a blow up of the first 1000 days of the upper panel.

propagation ∼ 1/(Lβ). The external parameters are
those associated with the forcing and friction — the
eddy turnover time is ultimately given by the mag-
nitude of the forcing and how effective it is in gen-
erating flow. If we choose our forcing decorrelation
time to be of order a few days to represent baroclinic
activity, then we must tune its magnitude to give flow
velocities with a magnitude similar to those observed,
and in that case the only remaining external free pa-
rameters are r and β.

Friction is clearly an important element in the red-
dening of the forcing spectrum, as we see from the
linear version of (3.1). The equation is

∂ζ

∂t
+ β

∂ψ

∂x
= S − rζ (6.1)

and this can be solved analytically if the power spec-
trum of S is known, assuming a solution of the form

ψ = ReΨei(k·x−ωt). (6.2)

Substituting into (6.1) gives

|Ψ|2 = S2
ω

[(k2ω + βkx)2 + r2k4]
(6.3)

and so the forcing spectrum is reddened. The so-
lution is completed by the addition of the homoge-
neous problem, a decaying Rossby wave.

Numerical solutions of the nonlinear problem
show this effect — in Fig. 15 we see a representative
timeseries of the first EOF in a zonally symmetric
simulation. (The EOF itself is first obtained using
temporally low-passed data, but the figure shows the
daily, unfiltered, values of the corresponding prin-
cipal component.) Fig. 16 show the corresponding
power spectra, which are characteristically red, with
more power at low frequencies when the friction is
small. The auto-correlation of the first two EOFs is
shown in Fig. 17, and these are of order 10 days.
The wobbling mode typically has a longer decorre-
lation than the pulse, but as noted previously these
two modes are not wholly independent and as the
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jet wobbles from one extreme latitude to another it
passes through its mean location twice. For shorter
timescales the decorrelation timescale (the e-folding
timescale) is approximately equal to the frictional
timescale, as expected in an Ornstein-Uhlenbeck
type process. However, inspection of Fig. 16a and
Fig. 17b indicates that the correlation timescale does
not increase as quickly as the frictional timescale in-
creases; for frictional timescales of 12 days, 23 days
and 43 days we find decorrelation timescales of 10
days, 15 days and 19 days respectively, in a 300 year
simulation. Evidently, the chaotic dynamics of the
large-scale fields are limiting the temporal correla-
tions. Somewhat unexpectedly, the auto-correlation
of the simulation with the higher damping (12 days)
has a shoulder at about 40 days, and has virtually
as much power at very long times as the simulation
with a 23-day damping timescale, anothe indication
that frictional effects are not the sole determinant of
the power at low-frequencies. (The correlation and
power spectra are quite robust, coming from a 300
year simulation.) Note that it is also apparent from
the timeseries that quite long excursions from the
mean are possible. For example, there is almost a
500 day excursion between 6000 and 7000 days, and
frequent excursions of order 100 days — note for ex-
ample the dip centered around 300 days. [Long term
variability was also found by James and James (1992)
in a simplified general circulation model, although
the variability they found involved the subtropical
jet, which is absent in this model.]

7. Summary and Conclusions

We have presented a simple dynamical model of the
North Atlantic Oscillation and the related annular
modes. We have shown that spatial structures simi-
lar to those associated with the North Atlantic Oscil-
lation and annular modes can be robustly and easily
reproduced with a stochastically forced, but nonlin-
ear, nondivergent barotropic model. The stochastic
forcing has a very simple spatial structure and need
not be extensively tuned for the patterns to appear.

The model suggests that the NAO and annular
modes are, essentially, two sides of the same coin.
The (single) phenomenon is associated with varia-
tions in the midlatitude circulation caused by fluctu-
ating stirring from baroclinic eddies. The fluctuat-
ing stirring produces both a variation in the intensity
and position of the zonal jet, and a dipolar circulation
anomaly. This in turn leads to a dipolar structure in
the streamfunction (i.e. the pressure field) variability,
and so a dipolar EOF, much as is observed.
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FIGURE 16: (a) Power spectra of the principal components
of the leading EOFs of the streamfunction in zonally sym-
metric integrations with varying values of the frictional pa-
rameter r, corresponding to frictional timescales of approx-
imately 12 days, 23 days and 46 days, with forcing as in Z1.
(b) Power spectral of the stochastic process, dz/dt = S−rz,
for the same three values of r used in (a), and S, the stochas-
tic forcing, also having the same power spectra as used to
force the model. The timeseries are normalized to have the
same variance.

If the eddy statistics are zonally uniform, then the
leading EOF of the zonal velocity and the stream-
function are also zonally uniform. Wave-meanflow
interaction has produced variability in the zonally
averaged flow, and this may be interpreted or de-
fined as an annular mode. However, the variability
of an annular mode is (in this interpretation) not the
hemispheric-wide synchronous variability or heaving
of a polar vortex. Rather, it is the projection onto the
zonally averaged flow of eddy dynamics.

The North Atlantic Oscillation is to be differenti-
ated from the annular mode primarily by its scale, not
its mechanism. The presence of an Atlantic storm-
track provides stronger stirring, and if the longitudi-
nal extent of the stormtrack is greater than that of a
single eddy, the same dynamics that produce varia-
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FIGURE 17: (a) Autocorrelation of the principal compo-
nents (PCs) of the first two EOFs of a zonally symmet-
ric integration (Z1), with a frictional timescale of 12 days.
(b) Autocorrelations of the PCs of the first EOFs of three
model integrations, each with a different value of the damp-
ing timescale (denoted ‘obs’), and the autocorrelations for
three Ornstein-Uhlenbeck processes with the same damp-
ing timescales (denoted OU).

.

tions of the zonally averaged flow will still act, just
more intensely, over that region. Thus, the jet vari-
ations will be stronger here than elsewhere, and any
measure of that variability, such as the first EOF of
pressure or streamfunction, will show a dipole cen-
tered near the eddy activity. Now, when the stirring is
stronger — i.e., when the stormtrack is stronger — the
barotropic jet is strengthened and tightened, whereas
any subtropical jet would be little altered. Thus, dur-
ing periods of high eddy activity the eastward ad-
vection will be strongest at latitudes poleward of its
mean position. Conversely, quiescent periods will
have a weaker barotropic jet and the eastward advec-
tion will be somewhat equatorward of its mean posi-
tion. Thus, at one extreme we can expect eddy-rich
activity with a strong eastward jet somewhat pole-
ward of its mean position; at the other extreme we

expect weaker eddy activity with a weaker, slightly
more equatorward jet. This is, of course, the manifes-
tation of the NAO.

Another way of expressing this is to say that it is
the organization of the baroclinic activity into spa-
tially coherent large scale patterns (i.e., storm tracks)
that gives rise to coherent large scale vorticity stir-
ring, and this in turn produces patterns like the NAO.
Because the mean amplitude of the vorticity-stirring
varies zonally, the eddy forcing has a stationary com-
ponent (i.e., there is a zonal asymmetry in the time
mean eddy fluxes) and it is this stationary compo-
nent that produces the NAO. Momentum fluxes from
stationary waves are really the same as the spatially
nonuniform eddy fluxes we have parameterized, and
that such forcing is responsible for the zonally asym-
metric patterns of variability seems consistent with
the observational analyses of Limpasuvan and Hart-
mann (2000).

If this mechanism is the case, then there should be
a corresponding phenomena in the Pacific as well as
the Atlantic corresponding to the Pacific stormtrack.
Such a ‘North Pacific Oscillation’ may well exist [in-
deed Walker and Bliss (1932) commented on it] al-
though it may not be as noticeable as the NAO both
because the high frequency variability in the Pacific is
less than in the Atlantic, and because there are many
other phenomena occurring in the Pacific, such as
ENSO, the Pacific North American pattern and the
Pacific Decadal Oscillation. There may well be ad-
ditional, more subtle differences in the stormtracks
between these regions and we recognize that the dif-
ferences between the NAO and NPO are unlikely
to be fully explained by our proposed mechanism.
[A potentially related issue is that there seems to be
an observed tendency for the maximum amplitude
of the EOFs to be located a little downstream of the
storm tracks. We might expect this because momen-
tum fluxes occur primarily in the decaying phase of
the baroclinic lifecycle, and thus downstream of the
center of the stormtracks. Such a mechanism cannot
be reproduced in a barotropic model, but nor, in fact,
is it a robust feature of simulations with GCMs (Cash
et al. 2002).]

The decorrelation timescale of the NAO and annu-
lar modes are observed to be about 10 days, and this
is well reproduced by the model, albeit it is partly
dependent on the frictional timescale chosen. The
eddy forcing itself, even the stationary-eddy forcing,
has a much shorter decorrelation timescale (a day or
two) and this is reddened by damping processes and,
to some degree, nonlinear dynamics. The barotropic
model does produce variability on long timescales,
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evidently up to 1000 days, although the presence
of a seasonal cycle might affect this. Determining
whether this long-term variability corresponds to that
seen in the observations will require a more detailed
study of both model and observations, since the na-
ture of such long-term variability is currently un-
clear in both. [Feldstein (2000) concludes that the
NAO is a Markov process with an e-folding timescale
of about 10 days, whereas Stephenson et al. (2000)
note the presence of ‘long-range dependencies’ (a red
spectrum) on interannual timescales. These may not
be contradictory, if the tails in the autocorrelations
are nonzero but small.]

What is particularly notable about the model we
have presented is what is not in it – for example,
there is neither a stratosphere nor an ocean. While
these and other factors may, of course, contribute to
the persistence and intensity of the NAO and annu-
lar modes, our results show that neither of them is
necessary for the basic existence or the spatial struc-
ture of these patterns. The model does suggest that
the ocean might influence the interannual variabil-
ity of the NAO by affecting baroclinic activity and
the stormtrack, but has less to say concerning strato-
spheric influences on the structures. Another sim-
plification in this model is that baroclinic effects are
modeled by a simple wavemaker that is not related
to the strength of the barotropic jet (although the en-
suing pseudomomentum stirring is organized by the
jet structure). This suggests that a state dependence of
the stirring is not a crucial ingredient of annular mode
or NAO structure. If we were to construct a model in
which the stirring were to depend on the strength of
the jet, the eddies might then follow the position of
the jet and a longer timescale might thereby be pro-
duced — but this is a speculative comment. Careful
studies with both parameterized models and a trust-
worthy GCM may be needed before one can defini-
tively determine the importance of such a feedback
mechanism between eddies and zonal flow in pro-
ducing intraseasonal variability, especially as the ob-
servations do not clearly discount a simpler stochas-
tic process. Finally, we point out that the dynamics of
the variability of a stochastically forced jet have not
been fully elucidated.

To conclude, we have presented a simple, dynam-
ically robust mechanism that reproduces some of the
important spatial and temporal characteristics of the
large-scale variability in the atmosphere. We hope it
may be useful as a dynamical basis for more com-
plete models and simulations, and in interpreting the
observations.

Appendix

Consider the Ornstein-Uhlenbeck process S given
by the stochastic differential equation

dS
dt

= −S
τ

+
σ
√

2√
τ
Ẇ (A.1)

with S(0) = S0. Suppose that S0 is chosen from some
initial distribution, to be determined below. S is a
Gaussian process, and thus wholly characterized by
its mean and covariance functions,

E[S(t)] = e−t/τE[S0] (A.2)

cov(S(s), S(t)) = e−(s+t)/τvar(S0) + σ2e−(t−s)/τ

− σ2e−(s+t)/τ (A.3)

where s ≤ t. When s, t >> 0, the mean and covari-
ance functions approach

E[S(t)]→ 0 (A.4)

cov(S(s), S(t))→ σ2e−(t−s)/τ (A.5)

regardless of the initial distribution of S0. In our
model we are interested in the long term statistical
behavior of the system and so lose nothing by tak-
ing the initial distribution of S0 to be the asymptotic
distribution, N(0, σ2). In this case, (A.2) and (A.3)
become (A.4) and (A.5).

We can then simulate S(t) with the finite difference
equation

Si =
√

1− e−2dt/τ φi + e−dt/τSi−1 (A.6)

where dt is our time step and the φi and S0 are ran-
dom variables taken from the Guasian distribution
N(0, σ2). The paths S0, S1, S2, ... are equivalent to
paths of S(t) sampled at increments of dt. This fol-
lows from the fact that {Si}, as a series of sums of
Guassian variables, is a Guassian process, and thus
characterized by its mean and covariance

E[Si] = 0 (A.7)

cov(Si, Sj) = σ2e−(j−i)dt/τ (A.8)

for i ≤ j, which match the properties of the contin-
uous process above. In our implementation of (A.6),
we sample the φi from a uniform distribution cen-
tered about zero, rather than a Gaussian. The mod-
ified process is not precisely an Ornstein-Uhlenbeck
process: it has the same mean and covariance struc-
ture of S, but slightly different higher moments. It
proved advantageous in avoiding occasional large
(and unrealistic) spikes in a single wavenumber.
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